Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Korean Journal of Veterinary Research ; : 195-202, 2020.
Article in English | WPRIM | ID: wpr-902549

ABSTRACT

Feline calicivirus (FCV) infection results in a common upper respiratory disease associated with oral ulceration in cats.Although FCV infection has been reported in cats worldwide, the biologic and genetic features of South Korean FCV are unclear. We aimed to investigate the biological and genetic features of South Korean FCV isolates. Crandell-Rees feline kidney (CRFK) cells were used to isolate FCV from 58 organ homogenate samples. The FCV isolates were confirmed by cytopathic effects, immunofluorescence, electron microscopy, and reverse transcription polymerase chain reaction assays. Viral genetic analysis was carried out with VP2 gene and complete genomes of FCVs. Five viruses propagated in CRFK cells were confirmed to be FCVs. The FCV17D283 isolate showed the highest viral titer of 107.2TCID50 /mL at 36 h post-inoculation. Korean FCV isolates did not grow well in Vero, BHK-21, A72, or Madin-Darby canine kidney cells. The FCV17D03 and FCV17D283 isolates had the highest genetic similarity (80.1% and 86.9%) with the UTCVM-H1 and 14Q315 strains, which were isolated in the United States and South Korea in 1995 and 2014, respectively. We isolated five FCVs from cats and detected important genetic differences among them. FCV isolates did not show any virulent effects in mice.

2.
Journal of Bacteriology and Virology ; : 263-272, 2020.
Article in English | WPRIM | ID: wpr-898904

ABSTRACT

Feline herpesvirus type 1 (FHV-1) causes respiratory and ocular disease in cats.Although isolates of FHV-1 circulating in cats have been reported worldwide, Korean FHV-1 isolates and their features have not been reported thus far. We aimed to investigate the biological and molecular characterization of two FHV-1 isolates based on the nucleotide sequence of thymidine kinase (TK) and glycoprotein B (gB) gene. In total, 48 samples from 12 cats were prepared for virus isolation.For the diagnosis, virus isolation, indirect fluorescence assay (IFA), electron microscopy (EM), and polymerase chain reaction (PCR) and for the molecular characterization, cloning and sequencing were used. Based on many methods such as virus isolation with specific cytopathic effects, IFA, EM, and PCR, two isolates were confirmed as FHV-1 and they showed the highest viral titer (108.3 to 108.5 TCID50 /mL) in the Crandell–Rees Feline Kidney cells at 48 h after inoculation, but did not grow in MDCK and Vero cells. The nucleotide and amino acid sequences of the full TK and gB gene of FHV191071 and FHV191072 isolates were determined and compared with those of other herpesvirus strains. Two isolates possessed the same nucleotide sequences belonging to FHV-1 group and had the highest similarity (99.9%) with the KANS-02 strain, which was isolated from shelter in USA in 2016. Two isolates were confirmed as FHV-1 and they will be a useful basic resource for evaluating current FHV-1 vaccine and developing diagnostic tools.

3.
Korean Journal of Veterinary Research ; : 195-202, 2020.
Article in English | WPRIM | ID: wpr-894845

ABSTRACT

Feline calicivirus (FCV) infection results in a common upper respiratory disease associated with oral ulceration in cats.Although FCV infection has been reported in cats worldwide, the biologic and genetic features of South Korean FCV are unclear. We aimed to investigate the biological and genetic features of South Korean FCV isolates. Crandell-Rees feline kidney (CRFK) cells were used to isolate FCV from 58 organ homogenate samples. The FCV isolates were confirmed by cytopathic effects, immunofluorescence, electron microscopy, and reverse transcription polymerase chain reaction assays. Viral genetic analysis was carried out with VP2 gene and complete genomes of FCVs. Five viruses propagated in CRFK cells were confirmed to be FCVs. The FCV17D283 isolate showed the highest viral titer of 107.2TCID50 /mL at 36 h post-inoculation. Korean FCV isolates did not grow well in Vero, BHK-21, A72, or Madin-Darby canine kidney cells. The FCV17D03 and FCV17D283 isolates had the highest genetic similarity (80.1% and 86.9%) with the UTCVM-H1 and 14Q315 strains, which were isolated in the United States and South Korea in 1995 and 2014, respectively. We isolated five FCVs from cats and detected important genetic differences among them. FCV isolates did not show any virulent effects in mice.

4.
Journal of Bacteriology and Virology ; : 263-272, 2020.
Article in English | WPRIM | ID: wpr-891200

ABSTRACT

Feline herpesvirus type 1 (FHV-1) causes respiratory and ocular disease in cats.Although isolates of FHV-1 circulating in cats have been reported worldwide, Korean FHV-1 isolates and their features have not been reported thus far. We aimed to investigate the biological and molecular characterization of two FHV-1 isolates based on the nucleotide sequence of thymidine kinase (TK) and glycoprotein B (gB) gene. In total, 48 samples from 12 cats were prepared for virus isolation.For the diagnosis, virus isolation, indirect fluorescence assay (IFA), electron microscopy (EM), and polymerase chain reaction (PCR) and for the molecular characterization, cloning and sequencing were used. Based on many methods such as virus isolation with specific cytopathic effects, IFA, EM, and PCR, two isolates were confirmed as FHV-1 and they showed the highest viral titer (108.3 to 108.5 TCID50 /mL) in the Crandell–Rees Feline Kidney cells at 48 h after inoculation, but did not grow in MDCK and Vero cells. The nucleotide and amino acid sequences of the full TK and gB gene of FHV191071 and FHV191072 isolates were determined and compared with those of other herpesvirus strains. Two isolates possessed the same nucleotide sequences belonging to FHV-1 group and had the highest similarity (99.9%) with the KANS-02 strain, which was isolated from shelter in USA in 2016. Two isolates were confirmed as FHV-1 and they will be a useful basic resource for evaluating current FHV-1 vaccine and developing diagnostic tools.

5.
Korean Journal of Veterinary Research ; : 31-36, 2017.
Article in English | WPRIM | ID: wpr-91210

ABSTRACT

Japanese encephalitis (JE) is an important zoonosis caused by the mosquito-transmitted JE virus (JEV), which is a causative agent of reproductive failure in pregnant sows. Detection of JEV antibodies in swine is performed by hemagglutination inhibition (HI), virus neutralization (VN), and the plaque reduction neutralization test (PRNT). The most stringent PRNT is the 90% endpoint PRNT (PRNT₉₀). These conventional assays are difficult to carry out in diagnostic laboratories with insufficient instruments or cell culture systems. An alternative assay that is easily conducted and time efficient is required. In this study, we improved the indirect enzyme-linked immunosorbent assay (I-ELISA) with clarified antigen for the detection of JEV antibodies. The I-ELISA results obtained from 175 swine serum samples were compared with HI, VN, and PRNT₉₀ results. The sensitivity of I-ELISA was 91.8%, 95.0%, and 94.7% compared with HI, VN, and PRNT₉₀ results, respectively. The specificity of I-ELISA was 92.2%, 94.7%, and 94.7% compared with HI, VN, and PRNT₉₀ results, respectively. Moreover, the I-ELISA results were significantly correlated with the HI (r = 0.93), VN (r = 0.95), and PRNT₉₀ (r = 0.92) results. These results suggest that the improved I-ELISA is useful for serosurveillance of JEV in swine.


Subject(s)
Humans , Antibodies , Asian People , Cell Culture Techniques , Encephalitis Virus, Japanese , Encephalitis, Japanese , Enzyme-Linked Immunosorbent Assay , Hemagglutination , Neutralization Tests , Sensitivity and Specificity , Swine
6.
Korean Journal of Veterinary Research ; : 37-42, 2017.
Article in English | WPRIM | ID: wpr-91209

ABSTRACT

Getah virus (GETV) infection causes sporadic outbreaks of mild febrile illness in horses and reproductive failure in pigs. In this study, we established a reverse transcription polymerase chain reaction (RT-PCR) method to detect GETV from suspected virus-infected samples. The reaction conditions were optimized and validated by using RNA extracted from GETV propagated in cell culture. A GETV-specific GED4 primer set was designed and used to amplify a 177 bp DNA fragment from a highly conserved region of the E1 glycoprotein gene in the GETV genome. RT-PCR performed with this primer set revealed high sensitivity and specificity. In the sensitivity test, the GED4 primer set detected GETV RNA at the level of 10(2.0) TCID₅₀/mL. In the specificity test, the GED4 primer set amplified only a single band of PCR product on the GETV RNA template, without non-specific amplification, and exhibited no cross-reactivity with other viral RNAs. These results suggest that this newly established RT-PCR method is useful for accurate identification of GETV infection in animals.


Subject(s)
Animals , Alphavirus , Cell Culture Techniques , Diagnosis , Disease Outbreaks , DNA , Genome , Glycoproteins , Horses , Livestock , Methods , Polymerase Chain Reaction , Reverse Transcription , RNA , RNA, Viral , Sensitivity and Specificity , Swine
7.
Journal of Bacteriology and Virology ; : 231-238, 2016.
Article in English | WPRIM | ID: wpr-228229

ABSTRACT

Japanese encephalitis (JE) is a zoonosis that affects the nervous system of humans and other animals. The genotype of JE virus (JEV) has shifted recently from genotype 3 (G3) to genotype 1 (G1) in Asia, including Korea. Thus, a rapid differential assay is required to make an accurate diagnosis of JEV genotype. In this study, we designed common and differential primer sets for JEV G1 and G3 to detect the JEV envelope (E) gene. The specific primer sets for JEV G1 and G3 specifically amplified the target gene. The detection limits of the three primer sets were 10(1.0), 10(2.0), and 10(2.0) TCID₅₀/reaction, respectively. No cross-reactivity was detected with non-JEV reference viruses. The multiplex reverse transcription-polymerase chain reaction (RT-PCR) assay specifically differentiated JEV G1 from G3. Thus, a one-step multiplex RT-PCR assay was established to rapidly and differentially detect JEV. This assay will be useful for confirming JEV infections in animals and checking the JEV genotype in veterinary biological products.


Subject(s)
Animals , Humans , Asia , Asian People , Biological Products , Diagnosis , Encephalitis Virus, Japanese , Encephalitis, Japanese , Genotype , Korea , Limit of Detection , Nervous System
8.
Journal of Bacteriology and Virology ; : 63-70, 2016.
Article in English | WPRIM | ID: wpr-153899

ABSTRACT

Getah virus (GETV) is a member of the genus Alphavirus in the family Togaviridae. GETV infection can occur in a wide range of vertebrate species, and the virus has been known for a pathogen of horses and pigs. To rapidly and accurately diagnose GETV infection of a racehorse, an indirect ELISA (I-ELISA) was developed in the present study for detection of antibodies to GETV in serum samples. To evaluate the developed I-ELISA, a total of 240 serum samples from Thoroughbred racehorses raised in Korea were screened in parallel by a serum neutralization (SN) test. The developed I-ELISA exhibited an efficacy comparable to that of the SN test in terms of a high diagnostic sensitivity (86.3%) and specificity (94.5%) at a cut-off absorbance value of 0.25. In addition, our results showed that the developed I-ELISA had a significant correlation with the SN test (r = 0.91; p < 0.05). Taken together, our findings suggest that the I-ELISA developed in this study is a valuable diagnostic tool for the screening of horses suspected to be infected with GETV.


Subject(s)
Humans , Alphavirus , Antibodies , Enzyme-Linked Immunosorbent Assay , Horses , Korea , Mass Screening , Sensitivity and Specificity , Swine , Togaviridae , Vertebrates
9.
Clinical and Experimental Vaccine Research ; : 132-137, 2016.
Article in English | WPRIM | ID: wpr-176940

ABSTRACT

PURPOSE: Aujeszky's disease (AD) is an economically important disease affecting both wild and domestic pigs of the species Sus scrofa. A previous study yielded serological evidence of AD in Korean wild boars, which could spread AD to other animals. A new Aujeszky's disease virus (ADV) bait vaccine is required to prevent AD outbreaks in swine. In the present study, we investigated the safety and immunogenicity of a gE-deleted marker vaccine, strain YS-400, in young domestic pigs. MATERIALS AND METHODS: The YS-400 strain was propagated in Vero cells, and the trial ADV bait vaccine (a vaccine blister in a matrix including an attractant) was prepared. Pigs were orally immunized with the vaccine (2 mL, 10(7.5) TCID(50)/mL) delivered using a syringe or in the bait vaccine. The animals were observed for 9 weeks after vaccination, and immunogenicity was assessed using a virus neutralization (VN) test and enzyme linked immunosorbent assay. RESULTS: The YS-400 strain was non-pathogenic to pigs when given orally and induced high VN titers (1:32-1:128) 6 weeks post-administration. Of the pigs given the ADV bait vaccine twice or three times, 40% were seropositive by 2 weeks, and 100% were seropositive by 7 weeks after the first dose. Pigs that consumed the AD bait vaccine three times developed VN titers that were slightly higher than those of pigs given the vaccine twice. CONCLUSION: Domestic pigs given the trial ADV bait vaccine exhibited no adverse effects and developed high VN titers against ADV, indicating that the YS-400 strain is safe and can prevent ADV infection in domestic pigs.


Subject(s)
Animals , Antibodies, Neutralizing , Blister , Disease Outbreaks , Enzyme-Linked Immunosorbent Assay , Herpesvirus 1, Suid , Pseudorabies , Sus scrofa , Swine , Syringes , Vaccination , Vero Cells
10.
Clinical and Experimental Vaccine Research ; : 159-168, 2016.
Article in English | WPRIM | ID: wpr-176937

ABSTRACT

PURPOSE: The development of a genetically modified live rabies vaccine applicable to wild raccoon dogs is necessary for the eradication of rabies in Korea. Thus, we constructed a recombinant rabies virus (RABV) called the ERAGS strain, using a reverse genetic system and evaluated its safety and efficacy in mice and its safety and immunogenicity in raccoon dogs. MATERIALS AND METHODS: ERAGS, which has Asn194Ser and Arg333Glu substitutions in the glycoprotein, was constructed using site-directed mutagenesis. Mice were inoculated with the ERAGS strain (either 10(5.0) or 10(7.0) FAID(50)/mL) via intramuscular (IM) or intracranial injections and then challenged with a virulent RABV. Raccoon dogs were administered the ERAGS strain (10(8.0) FAID(50)/mL) either orally or via the IM route and the immunogenicity of the strain was evaluated using fluorescent antibody virus neutralization tests. RESULTS: The ERAGS strain inoculated into murine neuroblastoma cells reached 10(7.8) FAID(50)/mL at 96-hour post-inoculation. The virus was not pathogenic and induced complete protection from virulent RABV in immunized 4- and 6-week-old mice. Korean raccoon dogs immunized with the ERAGS strain via IM or oral route were also safe from the virus and developed high titer levels (26.4-32.8 IU/mL) of virus-neutralizing antibody (VNA) at 4 weeks post-inoculation. CONCLUSION: The ERAGS RABV strain was effectively protective against rabies in mice and produced a high VNA titer in raccoon dogs.


Subject(s)
Animals , Mice , Glycoproteins , Korea , Mouth , Mutagenesis, Site-Directed , Neuroblastoma , Neutralization Tests , Rabies Vaccines , Rabies virus , Rabies , Raccoon Dogs , Raccoons , Vaccines
11.
Clinical and Experimental Vaccine Research ; : 169-174, 2016.
Article in English | WPRIM | ID: wpr-176936

ABSTRACT

PURPOSE: Rabies viruses (RABV) circulating worldwide in various carnivores occasionally cause fatal encephalitis in swine. In this study, the safety and immunogenicity of a recombinant rabies virus, the ERAGS strain constructed with a reverse genetics system, was evaluated in domestic pigs. MATERIALS AND METHODS: Growing pigs were administered 1 mL (108.0 FAID50/mL) of the ERAGS strain via intramuscular (IM) or oral routes and were observed for 4 weeks' post-inoculation. Three sows were also inoculated with 1 mL of the ERAGS strain via the IM route. The safety and immunogenicity in swine were evaluated using daily observation and a virus-neutralizing assay (VNA). Fluorescent antibody tests (FAT) for the RABV antigen and reverse transcriptase-polymerase chain reaction (RT-PCR) assays for the detection of the nucleocapsid (N) gene of RABV were conducted with brain tissues from the sows after necropsy. RESULTS: The growing pigs and sows administered the ERAGS strain did not exhibit any clinical sign of rabies during the test period test and did develop VNA titers. The growing pigs inoculated with the ERAGS strain via the IM route showed higher VNA titers than did those receiving oral administration. FAT and RT-PCR assays were unable to detect RABV in several tissues, including brain samples from the sows. CONCLUSION: Our results suggest that the ERAGS strain was safe in growing pigs and sows and induced moderate VNA titers in pigs.


Subject(s)
Administration, Oral , Brain , Encephalitis , Nucleocapsid , Rabies virus , Rabies , Reverse Genetics , Sus scrofa , Swine , Vaccines
12.
Journal of Bacteriology and Virology ; : 328-338, 2015.
Article in English | WPRIM | ID: wpr-218814

ABSTRACT

Three QIAG93 strains, QIAG9301, QIAG9302 and QIAG9303 that have been identified as Getah virus (GETV) are analyzed in this study. The morphological features of three virus isolates were observed by using electron microscopy, suggesting that the QIAG9301, QIAG9302 and QIAG9303 isolate can be classified as tentative member of Alphavirus species in the Semliki Forest complex. The full length of the structural polyprotein gene of each QIAG93 isolate (QIAG9301, QIAG9302 and QIAG9303) was determined that are identical in size, comprising 3759 nucleotides that encoded 1253 amino acids. The sequence analysis of the structural polyprotein gene, including the C, E3, E1, 6K and E2 domain, showed that each QIAG93 isolate shares >98.9% sequence identity. The phylogenetic analysis and evolutionary distance (ED) estimation based on the structural polyprotein gene sequence showed that the QIAG9301 isolate is closely related to GETV South Korea strain (99.9% sequence identity and ED value 0.001) and Chinese GETV YN0540 strain (99.3% sequence identity ED value 0.007) than other Alphavirus species analyzed in this study. Both QIAG9032 and QIAG9303 isolate exhibited genetically close relationship with Mongolian GETV LEIV17741MPR strain (at least 99.3% sequence identity and mean ED value 0.0065). Therefore, our findings will be valuable for molecular epidemiological analyses of GETV in Korea and contribute to a further study on pathogenicity of three QIAG93 isolates in animals.


Subject(s)
Animals , Humans , Alphavirus , Amino Acids , Asian People , Korea , Microscopy, Electron , Molecular Epidemiology , Nucleotides , Sequence Analysis , Trees , Virulence
13.
Korean Journal of Veterinary Research ; : 163-167, 2015.
Article in English | WPRIM | ID: wpr-223846

ABSTRACT

Canine parvovirus (CPV) is a major diarrhea-causing agent in puppies. Since CPV type 2 (CPV-2) emerged in 1978, new antigenic variants including CPV-2a, CPV-2b, and CPV-2c have been identified in many countries. Two puppies died suddenly at a veterinary clinic in Gyeonggi province, South Korea. Two viruses were isolated in A72 cells, confirmed as CPV strains based on a CPV rapid kit and an indirect fluorescence test and designated QIACP1403 and QIACP1404. The nucleotide sequences of complete VP2 genes of QIACP1403 and QIACP1404 were determined, and the corresponding amino acid sequences were deduced. Molecular analyses revealed that the QIACP1403 and QIACP1404 isolates were type CPV-2b. Several mutated amino acids were detected on VP2 gene residues of the two isolates. Phylogenetic analyses showed that the two isolates were most closely related to strain CPV-BM11, which was isolated from Chinese dogs in 2011. Our results suggest that these isolates may be a candidate for a vaccine to prevent CPV infection in dogs after conducting passages of the isolates in an in vitro culture system.


Subject(s)
Animals , Dogs , Humans , Amino Acid Sequence , Amino Acids , Asian People , Base Sequence , Fluorescence , Korea , Parvovirus, Canine
14.
Clinical and Experimental Vaccine Research ; : 107-113, 2015.
Article in English | WPRIM | ID: wpr-203144

ABSTRACT

PURPOSE: New rabies vaccine bait for both pets and raccoon dogs residing in Korea is needed to eradicate rabies infection among animals. In this study, we constructed a recombinant rabies virus (RABV), the ERAG3G strain, using a reverse genetics system. Then we investigated the efficacy of this strain in mice after oral administration and the safety of this strain in cats after intramuscular administration. MATERIALS AND METHODS: The ERAG3G strain was rescued in BHK/T7-9 cells using the full-length genome mutated at the amino acid position 333 of the glycoprotein gene of RABV and helper plasmids. Four-week-old mice underwent one or two oral administrations of the ERAG3G strain and were challenged with the highly virulent RABV strain CVSN2c 14 days after the second administration. Clinical symptoms were observed and body weights were measured every day after the challenge. RESULTS: All mice showed complete protection against virulent RABV. In addition, cats intramuscularly inoculated with the ERAG3G strain showed high antibody titers ranging from 2.62 to 23.9 IU/mL at 28-day postinoculation. CONCLUSION: The oral immunization of the ERAG3G strain plays an important role in conferring complete protection in mice, and intramuscular inoculation of the ERAG3G strain induces the formation of anti-rabies neutralizing antibody in cats.


Subject(s)
Animals , Cats , Mice , Administration, Oral , Antibodies, Neutralizing , Body Weight , Genome , Glycoproteins , Immunization , Korea , Plasmids , Rabies , Rabies Vaccines , Rabies virus , Raccoon Dogs , Reverse Genetics
15.
Clinical and Experimental Vaccine Research ; : 189-194, 2015.
Article in English | WPRIM | ID: wpr-22780

ABSTRACT

PURPOSE: A new rabies vaccine for animals, including raccoon dogs, in Korea is needed to eradicate rabies infection. In this study, we constructed two recombinant adenoviruses expressing the glycoprotein or nucleoprotein of the rabies virus (RABV). We then investigated the safety and immunogenicity of these strains in raccoon dogs, depending on inoculation route. MATERIALS AND METHODS: Recombinant adenoviruses expressing the glycoprotein (Ad-0910G) or nucleoprotein (Ad-0910N) of rabies were constructed in 293A cells using an adenoviral system. One-year-old raccoon dogs underwent intramuscular (IM) inoculation or oral administration of the recombinant Ad-0910G and Ad-0910N. Clinical symptoms were observed and virus-neutralizing antibodies (VNA) against RABV were measured at 0, 2, 4, and 6 weeks after the immunization. Raccoons were considered positive if VNA titers were > or = 0.1 IU/mL. RESULTS: Raccoon dogs inoculated with the combined Ad-0910G and Ad-0910N virus via the IM route did not exhibit any clinical sign of rabies during the observation period. All raccoon dogs (n = 7) immunized IM had high VNA titers, ranging from 0.17 to 41.6 IU/mL at 2 weeks after inoculation, but 70% (7/10) of raccoon dogs administered viruses via the oral route responded by 6 weeks after administration against RABV. CONCLUSION: Raccoon dogs inoculated with Ad-0910G and Ad-0910N viruses showed no adverse effects. Immunization with the combined Ad-0910G and Ad-0910N strains may play an important role in inducing VNA against RABV in raccoon dogs.


Subject(s)
Animals , Adenoviridae , Administration, Oral , Antibodies , Glycoproteins , Immunization , Korea , Nucleoproteins , Rabies Vaccines , Rabies virus , Rabies , Raccoon Dogs , Raccoons
16.
Journal of Bacteriology and Virology ; : 250-255, 2015.
Article in English | WPRIM | ID: wpr-51201

ABSTRACT

A new alternative rabies bait vaccine strain named ERAG3G, which is applicable to wild animals, was developed to eliminate rabies in South Korea. In this study, the safety and immunogenicity of the strain was evaluated in Korean raccoon dogs. The ERAG3G was propagated in BHK/T7-9 cells. Korean raccoon dogs were administered ERAG3G (1 ml, 10(8.0) FAID50/ml) orally or intramuscularly to evaluate its safety and immunogenicity. The raccoon dogs were observed for 70 days after administration, and immunogenicity was measured using a fluorescent antibody virus neutralization test. The ERAG3G strain was not pathogenic to Korean raccoon dogs immunized via the intramuscular or oral route. Raccoon dogs administered the candidate vaccine via the oral route developed high virus neutralizing antibody (VNA) titers ranging from 13.7 to 41.6 IU/ml 70 days post administration. Raccoon dogs inoculated intramuscularly with the ERAG3G strain developed moderate VNA titers ranging from 0.5 to 13.7 IU/ml. These findings suggest that the ERAG3G strain is safe and induces a protective immune response in raccoon dogs.


Subject(s)
Animals , Animals, Wild , Antibodies, Neutralizing , Korea , Neutralization Tests , Rabies virus , Rabies , Raccoon Dogs , Raccoons
17.
Korean Journal of Veterinary Research ; : 185-189, 2015.
Article in English | WPRIM | ID: wpr-47860

ABSTRACT

Bovine parainfluenza virus type 5 (bPIV5) was isolated from cattle with downer cow syndrome in 2012, and included both respiratory and neurotropic pathogens from a variety of animals. In the current study, we conducted serosurveillance using sera obtained from seven Korean farms and optimized a reverse transcription-polymerase chain reaction (RT-PCR) assay to detect bPIV5. The overall seropositive rate for Korean cattle was 21.4% (163/760). A farm located near the city of Milyang in Gyeoungnam province had a markedly elevated seropositive rate for bPIV5 compared to that of the other six farms. The regional seropositive rates were 4.2% (8/192) for Haman, 19.5% (18/55) for Hwasung, 73.9% (65/88) for Milyang, 26.0% (50/192) for Namwon, 1.0% (1/96) for Uljin, 13.5% (13/96) for Yeongju, and 32.7% (8/41) for Yongin. The sensitivity and specificity of three RT-PCR primer sets used to amplify the conserved fusion gene of bPIV5 were also evaluated. An RT-PCR assay using the bPIVFR3 primer set was 10-fold more sensitive than the assays using the two other primer sets and did not result in non-specific amplification. These results demonstrated that the bPIFR3 primer set can be used to detect bPIV5.


Subject(s)
Animals , Cattle , Parainfluenza Virus 5 , Paramyxoviridae Infections , Sensitivity and Specificity
18.
Journal of Bacteriology and Virology ; : 235-241, 2015.
Article in English | WPRIM | ID: wpr-155577

ABSTRACT

Getah virus (GETV), which is transmitted by mosquitoes, causes lower limb edema and stiffness in horses. In this study, we investigated the sero-surveillance of GETV among Thoroughbred racehorses in Korea during 2013 and 2014. A total of 1,182 equine serum samples collected from Thoroughbred racehorses in four provinces (Gyeongnam, Gyeonggi, Jeonbuk and Jeju provinces) were analyzed using virus neutralization (VN) tests. An antibody titer of > or = 1:2 was considered positive. Overall, the seropositivity rate for GETV was found to be 12.4% (146/1,182) among the racehorses; the annual seropositivity rates were 12.4% and 12.2% in 2013 and 2014, respectively. The seropositivity rates in April and September in 2013 turned out to be 8.6% and 15.2%, respectively. The regional distribution of seropositivity ranged from 5.0% to 22.3% in 2013 and from 0.0% to 15.0% in 2014, respectively. Gyeongnam province had the highest seropositivity rate than other provinces. By analyzing the distribution of VN titers according to horse age, we found that the highest GETV seropositivity rate was in horses over 6 years of age (22.4% and 28.1%, 2013 and 2014, respectively), and that the incidence of GETV was higher in geldings (17.6% and 18.6%, 2013 and 2014, respectively) than in males and females. These results indicate that Thoroughbred horses raised in Korea were bitten by mosquitoes harboring GETV.


Subject(s)
Female , Humans , Male , Alphavirus , Culicidae , Edema , Horses , Incidence , Korea , Lower Extremity
19.
Korean Journal of Veterinary Research ; : 227-232, 2015.
Article in English | WPRIM | ID: wpr-125572

ABSTRACT

Akabane and bovine ephemeral fever (BEF) viruses cause vector-borne diseases. In this study, inactivated Akabane virus (AKAV)+Bovine ephemeral fever virus (BEFV) vaccines with or without recombinant vibrio flagellin (revibFlaB) protein were expressed in a baculovirus expression system to measure their safety and immunogenicity. Blood was collected from mice, guinea pigs, sows, and cattle that had been inoculated with the vaccine twice. Inactivated AKAV+BEFV vaccine induced high virus neutralizing antibody (VNA) titer against AKAV and BEFV in mice and guinea pigs. VNA titers against AKAV were higher in mice and guinea pigs immunized with the inactivated AKAV+ BEFV vaccine than in animals inoculated with vaccine containing revibFlaB protein. Inactivated AKAV+BEFV vaccine elicited slightly higher VNA titers against AKAV and BEFV than the live AKAV and live BEFV vaccines in mice and guinea pigs. In addition, the inactivated AKAV+BEFV vaccine was safe, and induced high VNA titers, ranging from 1 : 64 to 1 : 512, against both AKAV and BEFV in sows and cattle. Moreover, there were no side effects observed in any treated animals. These results indicate that the inactivated AKAV+BEFV vaccine could be used in cattle with high immunogenicity and good safety.


Subject(s)
Animals , Cattle , Cattle , Mice , Antibodies, Neutralizing , Baculoviridae , Ephemeral Fever , Flagellin , Guinea Pigs , Vaccines , Vibrio
20.
Korean Journal of Veterinary Research ; : 107-112, 2014.
Article in English | WPRIM | ID: wpr-36071

ABSTRACT

Four viruses showing cytopathic effects in MDBK cells were isolated from brains of cattle showing downer cattle syndrome in 2012. The isolates were confirmed to belong to the genus Rubulavirus of the subfamily Paramyxovirinae. Isolate QIA-B1201 had the ability to hemagglutinate red blood cells from several species of animals and was capable of adsorbing guinea pig erythrocytes on the surface of infected Vero cells. Nucleotide sequence analysis showed that two isolates (QIA-B1201 and QIA-B1204) had high similarity with other human and animal PIV5 isolates ranging from 98.1 to 99.8%. The highest sequence similarity of the two isolates corresponded to strain KNU-11 (99.8% at the nucleotide and amino acid level) isolated from suckling piglets in Korea in 2012. To evaluate the virulence of strain QIA-B1201, we inoculated bPIV5 into 5 week-old mice via both the intraperitoneal and intracranial route. Body weight was not significantly altered in mice inoculated with QIA-B1201. In this study, we isolated and characterized novel bPIV5s from brain samples showing downer cattle syndrome, but were not able to elucidate the pathogenicity of the bPIV5s in mice.


Subject(s)
Animals , Cattle , Humans , Mice , Base Sequence , Body Weight , Brain , Erythrocytes , Guinea Pigs , Incidence , Korea , Parainfluenza Virus 5 , Paramyxoviridae Infections , Paramyxovirinae , Rubulavirus , Vero Cells , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL